When using infrared temperature sensors (IRt/c) in curing systems there are three common challenges that you should consider:
In order to achieve optimal ROI and operational efficiency in processes that require curing systems, it is ideal to employ a cost-effective IRt/c sensing system. These systems require no calibration, no operator attention, can withstand abuse in the field, and can be easily replaced if needed. Following are solutions to the three most common challenges that occur when employing an IRt/c sensor in a curing system.
Solution to Problem 1: Sensor overheating during operation
Sensors needs a constant flow of forced air (ambient air) guided along and around them for several reasons. First, the air helps ensure that the sensors remain close to the ambient temperature during operation. Secondly, if a small portion of the air is guided toward the sensing element, sufficient pressure is created to prevent dust from entering the sensor unit and landing on the sensing head, which can disturb the reading. An easy way to suply the air required for this purpose is to employ the fans that cool the whole system. When doing so, it is important to be sure that the guided air leaving the sensor does not blow on the fabric, creating a cool spot. (A good solution to this challenge is to mechanically guide the air -- after cooling the sensor body -- at a 90° angle away from the sensor). In order to determine if there is sufficient airflow to cool the sensor, we recommend employing an additional contact temperature sensor connected to the body of an IRt/c. If the contact sensor detects that the body temperature of the IRt/c is increasing, it is likely that the curing system’s air filters are getting clogged and need cleaning.
Clogged filters reduce the air flow used for cooling, and the increase in temperature can be directly measured at the IR sensor’s body. The contact sensor embedded in the IR sensor provides an ideal tool with which to assess air filter conditions. This approach provides a simple and reliable method to prevent damage to both the sensor and other electrical components that can be caused by clogged air filters. Exergen can provide this configuration as a special build.
Solution to Problem 2: Sensor overheating after power shut down
While fans will normally help prevent overheating after the curing sytems has been shut down, if a power outage occurs (as often happens in countries like Mexico, Bangladesh and others), the sytem is at risk.
Exergen recommends the following solutions to avoid overheating during power outages:
Since there is effective and reliable cooling available at no cost via the cooling fans as described above, there is no benefit to deploying sensors that operate in temperatures of up to 180°C (356°F) uncooled. Such sensors add about > $ 200 to the system cost when compared to standard 50°C (212°F) sensors.